
DOT NET PROGRAMMING

DOT NET PROGRAMMING

CHAPTER – 4 : Introducing windows forms

SESSION – 29 : Overview of the system. windows. Forms Namespaces,

Overview of the system. windows.
This chapter introduces us to the System.Windows.Forms namespace. Here, we learn how to

build a highly stylized main window (e.g., a Form-derived class). In the process, we learn about a
number of window-related types, including MenuItem, ToolBar, StatusBar, and Application. This
chapter also introduces how to capture and respond to user input (i.e., handling mouse and keyboard
events) within the context of a GUI environment.

A Tale/Story of Three GUI Namespaces :

 The .NET platform provides three GUI toolkits, known as "Windows Forms," "Web Forms,"
and "Mobile Forms."

 The System.Windows.Forms namespaces contain a number of types that allow us to build
traditional desktop applications, as well as Windows-based applications that target handled
computing devices (such as the Pocket PC).Windows Forms hides the raw windowing
primitives from view, allowing us to focus on the functionality of our application using the
familiar .NET type system.

 Web Forms is a GUI toolkit used during ASP.NET development. The bulk of the Web Form
types are contained in the System.Web.UI.WebControls namespace. Using these types, we
are able to build browser-independent front ends based on various industry standards
(HTML, HTTP, and so on).

 The .NET version 1.1 ships with a new GUI-centric namespace,
System.Web.UI.MobileControls, which allow us to build UI (user interface)s that target
mobile devices (such as cellular phones). Not surprisingly, the programming model of
Mobile control applications mimics the functionality found within ASP.NET.

 It is worth pointing out that while Windows Forms, Web Forms, and Mobile Forms
technologies define a number of similarly named types (e.g., Button, CheckBox, etc.) with
similar members (Text, BackColor, etc.), they do not share a common implementation and
cannot be treated identically.

Overview of the System.Windows.Forms Namespace :

 The System.Windows.Forms is composed of a number of classes, structures, delegates,
interfaces, and enumerations.

 The following table lists some of the core classes found within System.Windows.Forms.

DOT NET PROGRAMMING

Windows Forms Class Description

Application Using the members of Application, you are able
to process windows messages, start and
terminate a

ButtonBase,
Button,

These classes (in addition to many others)
represent

CheckBox,
ComboBox, DataGrid, GroupBox,
ListBox, LinkLabel, PictureBox

types that correspond to various GUI widgets.

Form This type represents a main window, dialog
box, or MDI child window of a Windows Forms
application

ColorDialog, OpenFileDialog,
SaveFileDialog, FontDialog,
PrintPreviewDialog,
FolderBrowserDialog

 As you might expect, Windows Forms defines a
number of canned dialog boxes. If these don't
fit the bill, you are free to build your own
custom dialogs

Menu, MainMenu, MenuItem,
ContextMenu

These types are used to build top most and
context sensitive (pop-up) menu systems.

Clipboard, Help, Timer, Screen,
ToolTip, Cursors

Various utility types used to facilitate
interactive GUIs

StatusBar, Splitter, ToolBar,
ScrollBar

Various types used to adorn a Form with
common child controls.

Interacting with the Windows Forms Types :
When we build a Windows Forms application, we may choose to write all the relevant code by hand
(using Notepad) and send the resulting *.cs files into the C# compiler using the /target:winexe flag.
Taking time to build some Windows Forms applications by hand is not only a great learning
experience, but also helps us understand the code generated by various GUI wizards.

Another option is to build Windows Forms projects using the Visual Studio .NET IDE. To be sure,
the IDE does supply a number of great wizards, starter templates, and configuration tools that make
working with Windows Forms extremely simple. The problem with wizards, is that if we do not
understand what the generated code is doing on our behalf, we cannot gain a true mastery of the
underlying technology.

DOT NET PROGRAMMING

Prepping the Project Workspace : To begin understanding Windows Forms

programming, let's build a simple main window by hand. Let us first create a new

empty C# project workspace named "MyRawWindow" using the VS .NET IDE. Next,

insert a new C# class definition (resist the temptation to insert a new Windows Form

class!) from the "Project | Add New Item..." menu option. Name this class

MainWindow.

When we build a main window

by hand, we need to use the Form and

Application types (at minimum), both

of which are contained in the

System.Windows.Forms.dll assembly.

A Windows Forms application also

needs to reference System.dll, given

that some types in the Windows Forms

assembly make use of types in the

System.dll assembly. Add references to

these assemblies now (shown in

Figure).

Building a Main Window (By Hand) : In the world of Windows Forms, the Form

class is used to represent any window in our application. This includes a topmost main

window in an SDI (Single Document Interface) application, modeless and modal

dialogs, as well as the parent and child windows of an MDI (Multiple Document

Interface) application. When we are interested in creating a new main window, we have

two mandatory steps:

• Derive a new custom class from System.Windows.Forms.Form.

• Configure the application's Main() method to call Application.Run(), passing

an instance of our new Form-derived type as an argument.

DOT NET PROGRAMMING

With these steps in mind, we are able to update our initial class definition as follows:

 using System;
using System.Windows.Forms;
namespace MyRawWindow
{

public class MainWindow : Form

{

public MainWindow(){ }

// Run this application and identify the main window.
public static int Main(string[] args)

{

Application.Run(new MainWindow());
return 0;

}

}

}

Here, we have defined with Main() method the scope of the class that represents the

main window. If we prefer, one may wish to create a second class (we named ours, TheApp)

which is responsible for the task of launching the main window:

namespace MyRawWindow
{

public class MainWindow : Form

{

public MainWindow(){}

}

public class TheApp

{

public static int Main(string[] args)

{

Application.Run(new MainWindow()); retur
n 0;

}

}

}

DOT NET PROGRAMMING

In either case, Figure shows a test run.

 If we noticehow our MyRaw

Window application has been

launched, we should notice an

irritating command window looming

in the background. This is because

one have not yet configured the build

settings to generate a Windows *.exe

application. To supply the /t:winexe

flag from within the IDE, open the

Project Properties

window (just right-click the project icon from the Solution Explorer) and expand the

"Common Properties | General" node. Finally, configure the "Output Type" property as

"Windows Application" (as shown in Figure). When we recompile, the irritating

command window will be gone and our application will run as a true-blue Windows

app.

So, at this point we have a minimizable, maximizable, resizable, and closable

main window (with a default system-supplied icon to boot!). To be sure, it is a great

boon to the Win32 programmers of the world to forego the need to manually configure

a WndProc function, establish a WinMain() entry point, and play the bits of a

WNDCLASSEX structure.

Building a VS .NET Windows Forms Project Workspace : The benefit of

building Windows Forms applications using Visual Studio

DOT NET PROGRAMMING

.NET is that the integrated tools can take care

of a number of ordinary coding details by

delegating them to a number of wizards,

configuration windows, and so on. To

illustrate how to make use of such assistance,

close our current workspace. Now, select a

new C# Windows Application project type

(shown in Figure).

When we click OK, we will find that we are

automatically given a new class derived from

System.Windows.Forms.Form [with a properly configured

Main() method] and have references set to each required

assembly (as well as some additional assemblies that one

may or may not make use of). We will also see that we are

given a design-time template that can be used to assemble

the user interface of our Form (shown in Figure). Understand

that as we update this design-time template, we are indirectly

adding code to the associated Form-derived class (named

Form1 by default).

Using the Solution Explorer window, we are able to alternate between this design-time

template and the underlying C# code. To view the code that represents our current design,

simply right-click the *.cs file and select "View Code". One can also open the code window by

double-clicking anywhere on the design time Form; however, this has the (possibly undesirable)

effect of writing an event handler for the Form's Load event.

Once we open the code window, we will see a class that looks very much like the

following (XML-based code comments removed for clarity):

namespace VSWinApp
{

public class Form1 : System.Windows.Forms.Form {
private System.ComponentModel.Container components
= null; public Form1()

DOT NET PROGRAMMING

{ InitializeComponent(); }
protected override void Dispose(bool disposing)
{

if(disposing)
{

if (components != null)
{

components.Dispose();
}

}
base.Dispose(disposing);

}
#region Windows Form Designer generated
code private void InitializeComponent() {

this.components = new System.ComponentModel.Contai
ner(); this.Size = new System.Drawing.Size(300,300);
this.Text = "Form1";

}
#endregion [ST
AThread]
static void Main()
{

Application.Run(new Form1());
}

}
}

As we can see, this class listing is essentially the same code as the previous raw

Windows Forms example. Our type still derives from System.Windows.Forms.Form, and

the Main() method still calls Application.Run().

The major change is a new method named InitializeComponent(), which is wrapped

by the #region and #endregion preprocessor directives.

The Role of InitializeComponent() and Dispose() : The InitializeComponent() method

is updated automatically by the Form

Designer to reflect the modifications

DOT NET PROGRAMMING

one make to the Form and its controls

using the Visual Studio .NET IDE. For

example, if we were to use the

Properties window to modify the

Form's Text and BackColor properties

(shown in Figure), we would find

that InitializeComponent() has been

modified accordingly:

#region Windows Form Designer generated
code private void InitializeComponent() {

this.AutoScaleBaseSize = new System.Drawing.Size(5, 1
3); this.BackColor = System.Drawing.Color.Lime;
this.ClientSize = new System.Drawing.Size(292, 273);
this.Text = "My Rad Form";

}
#endregion

The Form-derived class calls InitializeComponent() within the scope
of the default constructor:

public Form1()
{
// Required for Windows Form Designer support

InitializeComponent();
}
Do note that this helper method is simply a well-known member that VS .NET

understands. If we moved all the code within this method into the Form's constructor,

our application would run identically. Unlike other windowing toolkits, the wizard-

generated code does not tie us to a particular IDE (VS .NET or otherwise). The final

point of interest is the overridden Dispose() method. This method is called

automatically when our Form is about to be destroyed, and is a safe place to free any

allocated resources.

DOT NET PROGRAMMING

Application Class :

 The Application class defines members that allow us to control various low-level

behaviors of a Windows Forms application.

 For example, the Application class defines a set of events that allow us to respond to

events such as application shutdown and idle processing.

 The Application class also defines a number of static properties, many of which are

read- only.

Table : Core Properties of the Application Ty

 Finally, the Application class defines the events shown in Table.

DOT NET PROGRAMMING

The Anatomy of a Form :

 when we create a new window (or dialog box) we need to define a new class deriving from

System.Windows.Forms.Form.

 This class gains a great deal of functionality from the types in its inheritance chain. F

 Form ultimately derives from System.Object. MarshalByRefObject defines the behavior to

remote this type by reference, rather than by value.

 Thus, if we remotely interact with a Form across the wire, we are manipulating a reference

to Form on remote machine.

 The Component Class : First base class of immediate interest is Component. Component
type provides a canned implementation of the IComponent interface. This predefined
interface defines a property named Site, which returns an ISite interface. Furthermore,
IComponent inherits a single event from the IDisposable interface named Disposed

public interface IComponent : IDisposable
{

// The Site property.
public ISite Site { get;
set; }
// The Disposed event.
public event EventHandler Disposed;

}
The ISite interface defines a number of methods that allow a Control to interact

DOT NET PROGRAMMING

with the hosting container:
public interface ISite : IServiceProvider
{

// Properties of the ISite interface.
public IComponent Component
{ get; } public IContainer Container
{ get; } public bool DesignMode
{ get; } public string Name { get; set; }

}
By and large, the properties defined by the ISite interface are only of interest to

us if we are attempting to build a widget that can be manipulated at design time (such

as a custom Windows Forms control).

Component also provides an implementation of the Dispose() method. When a

Form has been closed, the Dispose() method is called automatically for the Form and

for all widgets contained within that form.

 The Control Class : The next base class of interest is System.Windows.Forms.Control,

which establishes the common behaviors required by any GUI-centric type. The core

members of System.Windows.Forms.Control allow us to configure the size and position

of a control, extract the underlying HWND (i.e., a numerical handle for a given

window), as well as capture keyboard and mouse input.

The Control base class also defines a number of methods that allow you to

interact with any Control-derived type. A partial list of some of the more common

members

appears in

Table.

DOT NET PROGRAMMING

Table : Select Members of the Control Type

Control Events : The Control class also defines a number of events that can logically be

grouped into two major categories: Mouse events and keyboard events, shown in Table.

Table : Events of the Control Type

Function with the Control Class :

Control class does define additional properties, methods, and events beyond the subset

we have examined.

However, to illustrate some of these core members, let's build a new Form type (also

called MainForm) that provides the following functionality:

• Set the initial size of the Form to some arbitrary dimensions.

• Override the Dispose() method.

• Respond to the MouseMove and MouseUp events (using two approaches).

• Capture and process keyboard input.

DOT NET PROGRAMMING

// Need this for Rectangle definition.
using System.Drawing;
...
public class MainForm : Form
{

public static int Main(string[] args)
{

Application.Run(new MainForm());

 return 0;

}
public MainForm()
{

Top = 100;
Left = 75;
Height = 100;
Width = 500;
MessageBox.Show(Bounds.ToString(), "Current rect");

}
}

When we run this application, we are able to confirm the coordinates of our Form via the

Bounds property.

The Control Class Revisited :
The Control class defines further behaviors to configure background and foreground colors,

background images, font characteristics, drag-and-drop functionality and support for pop-up

context menus.

This class provides docking and anchoring behaviors for the derived types.

Perhaps the most important duty of the Control class is to establish a mechanism to render

images, text, and various geometric patterns onto the client area via a registered Paint event

handler.

DOT NET PROGRAMMING

The Control class also defines a number of additional methods and events used to
configure how the Control should respond to drag-and-drop operations and respond to painting
operations as shown in Table.

Table : Additional Control Methods

-

DOT NET PROGRAMMING

e :

The screen shot shows how buttons might appear in Windows Vista. The appearance will vary on
different versions of the operating system, and according to the theme set by the user.

Note the following points about the illustration:

DOT NET PROGRAMMING

 The three-state check box is shown in the indeterminate state. When checked or unchecked,
it looks like a normal check box.

 The large push button has been set to the pushed state programmatically (by sending the
BM_SETSTATE message), so that it retains its appearance even when it is not being
clicked.

 In the visual style shown, the background of the default push button (or another push button
that has the input focus) cycles between blue and gray.

The role of the System.Windows.Forms.Button type is to provide a simple vehicle for

user input, typically in response to a mouse click or key press.

The Button class immediately derives from an abstract type named ButtonBase, which

provides a number of key behaviors for all Button-related types (CheckBox,

RadioButton, and Button).

Below table describes some (but by no means all) of the core properties of ButtonBase.

The Button class itself defines almost no additional functionality beyond that

inherited by the ButtonBase base class, with the key exception of the DialogResult

property. A dialog box makes use of this property to return a value representing which

Button was clicked (e.g., OK, Cancel, and so on) when the dialog box is terminated.

Fun with Buttons : To illustrate working with this most primitive of user input widgets, the

following application uses the FlatStyle, ImageAlign, and TextAlign properties. The most

interesting aspect of the underlying code is in the Click event handler for the btnStandard type

(which would be the Button in the middle of the Form). The implementation of this method

DOT NET PROGRAMMING

cycles through each member of the ContentAlignment enumeration and changes the Button's

caption text and caption location based on the current value.

public class ButtonForm: System.Windows.Forms.Form {
// You have four Buttons on this Form. private
System.Windows.Forms.Button btnImage; private
System.Windows.Forms.Button btnStandard; private
System.Windows.Forms.Button btnPopup; private
System.Windows.Forms.Button btnFlat;

// Hold the current alignment value.
ContentAlignment currAlignment = ContentAlignment.MiddleCenter;

int currEnumPos = 0;
...

protected void btnStandard_Click (object sender, System.EventArgs e)

{

// Get all possible values of the ContentAlignment enum.
Array values = Enum.GetValues(currAlignment.GetType());

// Bump the current position in the enum.
// & check for wraparound.
currEnumPos++;

if(currEnumPos >=
values.Length) currEnumPos = 0;

// Change the current enum value. currAlignment =

(ContentAlignment)ContentAlignment.Parse(currAlignment.GetType()

, values.GetValue(currEnumPos).ToString());

// Paint enum name on Button.
btnStandard.Text =
currAlignment.ToString();
btnStandard.TextAlign = currAlignment;

// Now assign the location of the icon on btnImage...
btnImage.ImageAlign = currAlignment;

}

...

}

The output can be seen in Figure.

DOT NET PROGRAMMING

using System;
using System.Drawing;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 button1.Text = "Click Here";
 }

 private void button1_Click(object sender, EventArgs e)
 {
 MessageBox.Show("http://cshap.net-informations.com");
 }
 }
}

How to Call a Button's Click Event Programmatically

The Click event is raised when the Button control is clicked. This event is commonly used when no
command name is associated with the Button control. Raising an event invokes the event handler
through a delegate.

DOT NET PROGRAMMING

private void Form1_Load(object sender, EventArgs e)
{
 Button b = new Button();
 b.Click += new EventHandler(ShowMessage);
 Controls.Add(b);
}
private void ShowMessage(object sender, EventArgs e)
{
 MessageBox.Show("Button Click");
}

Property Description
BackColor Using BackColor property you can set the background color of the button.

BackgroundImage
Using BackgroundImage poperty you can set the background image on the
button.

AutoEllipsis
Using AutoEllipsis property you can set a value which shows that whether the
ellipsis character (…) appears at the right edge of the control which denotes
that the button text extends beyond the specified length of the button.

AutoSize
Using AutoSize property you can set a value which shows whether the button
resizes based on its contents.

Enabled Using Enabled property you can set a value which shows whether the button

DOT NET PROGRAMMING

can respond to user interaction.

Events
Using Events property you can get the list of the event handlers that are
applied on the given button.

Font Using Font property you can set the font of the button.
FontHeight Using FontHeight property you can set the height of the font.
ForeColor Using ForeColor property you can set the foreground color of the button.
Height Using Height property you can set the height of the button.
Image Using Image property you can set the image on the button.
Margin Using Margin property you can set the margin between controls.
Name Using Name property you can set the name of the button.
Padding Using Padding property you can set the padding within the button.

Visible
Using Visible property you can set a value which shows whether the button
and all its child buttons are displayed.

Important Events on Button

Event Description
Click This event occur when the button is clicked.
DoubleClick This event occur when the user performs double click on the button.
Enter This event occur when the control is entered.

KeyPress
This event occur when the character, or space, or backspace key is pressed
while the control has focus.

Leave This event occur when the input focus leaves the control.
MouseClick This event occur when you click the mouse pointer on the button.
MouseDoubleClick This event occur when you double click the mouse pointer on the button.
MouseHover This event occur when the mouse pointer placed on the button.
MouseLeave This event occur when the mouse pointer leaves the button.

 Working with CheckBoxes :

 The other two ButtonBase-derived types of interest are CheckBox (which can support up to
three possible states) and RadioButton (which can be either selected or not selected). Like the
Button, these types also receive most of their functionality from the Control base class.
However, each class defines some additional functionality. First, consider the core properties of
the CheckBox widget described in Table.

DOT NET PROGRAMMING

Checkboxes and Radio Buttons are way to offer your users choices. Checkboxes allow a user
to select multiple options, whereas Radio Buttons allow only one.

Let's see how to use them. Start a new project. When your new form appears, make it nice and
big. Because Checkboxes and Radio Buttons are small and fiddly to move around, its best to
place them on a Groupbox. You can then move the Groupbox, and the checkboxes and radio
buttons will move with them.

Locate the Groupbox control in the Toolbox on the left, under Containers. It looks

like this:

Draw one out on your form. Locate the Text property in the properties window on the right of
C#.

Add a second Groupbox along side of the first one, and set the Text property as And Your
Favourite Is?. Your form will then look like this:

Working with RadioButtons and GroupBoxes : The RadioButton type really requires

little comment, given that it is (more or less) just a slightly redesigned CheckBox. In

fact, the members of a RadioButton are almost identical to those of the CheckBox type.

DOT NET PROGRAMMING

The only notable difference is the CheckedChanged event, which is fired when the

Checked value changes. Also, the RadioButton type does not support the ThreeState

property, as a RadioButton must be on or off.

Typically, multiple RadioButton objects are logically and physically grouped

together to function as a whole. For example, if you have a set of four RadioButton

types representing the color choice of a given automobile, you may wish to ensure that

only one of the four types can be checked at a time. Rather than writing code

programmatically to do so, use the GroupBox control. Like the RadioButton, there is

little to say about the GroupBox control, given that it receives all of its functionality

from the Control base class.

using System;

using System.Drawing;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 radioButton1.Checked = true;
 }

 private void button1_Click(object sender, EventArgs e)
 {
 if (radioButton1.Checked == true)
 {
 MessageBox.Show ("You are selected Red !! ");
 return;
 }
 else if (radioButton2.Checked == true)
 {
 MessageBox.Show("You are selected Blue !! ");
 return;
 }
 else
 {
 MessageBox.Show("You are selected Green !! ");
 return;
 }
 }
 }
}

DOT NET PROGRAMMING

Fun with RadioButtons (and CheckBoxes) : To illustrate working with the CheckBox,

RadioButton, and GroupBox types, let's create a new Windows Forms Application named

CarConfig, which will be extended throughout this chapter. The main Form allows users to enter

in (and confirm) information about a new vehicle they intend to purchase. The order summary is

displayed in a Label type once the Confirm Order button has been clicked. Below figure shows

the user interface.

// Create your CheckBox.
checkFloorMats.Location = new System.Drawing.Point (16, 1
6); checkFloorMats.Text = "Extra Floor Mats";
checkFloorMats.Size = new System.Drawing.Size (136, 24); c
heckFloorMats.FlatStyle = FlatStyle.Popup;

// Add to Control collection.
this.Controls.Add (this.checkFloorMats);

Programmatically speaking, when we wish to place a widget under the ownership of a related

GroupBox, we want to add each item to the GroupBox's Controls collection (in the same way

you add widgets to the Form's Controls collection). To make things a bit more interesting,

respond to the Enter and Leave events sent by GroupBox object as shown here:

// Yellow RadioButton.
radioYellow.Location = new System.Drawing.Point (96, 24);
radioYellow.Text = "Yellow";
radioYellow.Size = new System.Drawing.Size (64, 23);

// Green, Red, Pink RadioButtons configured in a similar
vein.
...

// Now build the group of radio items.
groupBox1.Location = new System.Drawing.Point
(16, 56); groupBox1.Text = "Exterior Color";
groupBox1.Size = new System.Drawing.Size (264, 88); group
Box1.Leave += new System.EventHandler (groupBox1_Leav
e); groupBox1.Enter += new System.EventHandler (groupBox
1_Enter); groupBox1.Controls.Add (this.radioPink); groupBox
1.Controls.Add (this.radioYellow); groupBox1.Controls.Add (th
is.radioRed); groupBox1.Controls.Add (this.radioGreen);

DOT NET PROGRAMMING

Understand, of course, that you do not need to capture the Enter or Leave events for a

GroupBox. However, to illustrate, the event handlers update the caption text of the GroupBox

as shown here:

// Figure out when the focus is in your group.
protected void groupBox1_Leave (object sender, System.EventArgs e)
{
groupBox1.Text = "Exterior Color: Thanks for visiting the group...";
}
protected void groupBox1_Enter (object sender, System.EventArgs e)
{
groupBox1.Text = "Exterior Color: You are in the group...";

The final GUI widgets on this Form (the Label and Button types) also need to be

configured and inserted in the Form's Controls collection. The Label is used to display

the order confirmation, which is formatted in the Click event handler of the order

Button, as shown here:

protected void btnOrder_Click (object sender, System.EventArgs e)
{
// Build a string to display information. string
orderInfo = "";
if(checkFloorMats.Checked)

orderInfo += "You want floor mats.\n";

if(radioRed.Checked)
orderInfo += "You want a red exterior.\n";

if(radioYellow.Checked)
orderInfo += "You want a yellow exterior.\n";

if(radioGreen.Checked)
orderInfo += "You want a green exterior.\n";

if(radioPink.Checked)
orderInfo += "Why do you want a PINK exterior?\n";

// Send this string to the Label.
infoLabel.Text = orderInfo;
}

DOT NET PROGRAMMING

Notice that both the CheckBox and RadioButton support the Checked property, which

allows you to investigate the state of the widget. Recall that if you have configured a

tristate CheckBox, you will need to check the state of the widget using the CheckState

property.

Examining the CheckedListBox Control : Now that you have explored the basic

Button- centric widgets, let's move on to the set of list selectioncentric

types, specifically, CheckedListBox, ListBox, and ComboBox. The CheckedListBox widget

allows you to group together related CheckBox options in a scrollable list control. Assume you

have added such a control to your CarConfig application that allows the user to configure a

number of options for regarding the automobile's sound system (as shown in Figure).

Like the controls examined thus far, the CheckedListBox type gains most of its

functionality from the Control base class type. Also, the CheckedListBox type inherits

additional functionality from its direct base class, ListBox.

To insert new items in a CheckedListBox, call Add() for each item or use the

AddRange() method and send in an array of objects (strings, to be exact) that represent

the full set of checkable items. Here is the configuration code (be sure to check out

online help for details about these new properties):

// Configure the CheckedListBox.
checkedBoxRadioOptions.Location = new System.Drawing.Point (16, 48);
checkedBoxRadioOptions.Cursor = Cursors.Hand;
checkedBoxRadioOptions.Size = new System.Drawing.Size (256, 64);
 checkedBoxRadioOptions.CheckOnClick = true;

// Add items to the CheckedListBox. checkedBoxRadioOptions.Items.AddRange
(new object[6] { "Front Speakers", "8-Track Tape Player","CD Player", "Cassette
Player", "Rear Speakers", "Ultra Base Thumper"});

DOT NET PROGRAMMING

// As always, add the new widget to the Controls collection.
this.Controls.Add (this.checkedBoxRadioOptions);

Now update the logic behind the Click event for the Order Button. Ask the

CheckedListBox which of its items are currently selected and add them to the orderInfo string.

Here are the relevant code updates:

protected void btnOrder_Click (object sender, System.EventArgs e)
{
// Build a string to display information.
string orderInfo = "";
...
// For each item in the CheckedListBox:
for(int i = 0; i < checkedBoxRadioOptions.Items.Count; i++)
{
// Is the current item checked?
if(checkedBoxRadioOptions.GetItemChecked(i))
{

// Get text of checked item and append to orderinfo string.
orderInfo += "Radio Item: ";
orderInfo += checkedBoxRadioOptions.Items[i].ToString();
orderInfo += "\n";

}}}
The final note regarding the CheckedListBox type is that it supports the use of multiple

columns through the inherited MultiColumn property. Thus, if you make the following update:

checkedBoxRadioOptions.MultiColumn = true;
checkedBoxRadioOptions.ColumnWidth = 130;

You see the multicolumn CheckedListBox shown in below Figure.
Important Properties

Property Description
Appearance This property is used to set a value determining the appearance of the RadioButton.

DOT NET PROGRAMMING

AutoCheck
This property is used to set a value indicating whether the Checked value and the
appearance of the RadioButton control automatically change when the RadioButton
control is clicked.

AutoSize
This property is used to set a value that indicates whether the RadioButton control
resizes based on its contents.

BackColor This property is used to set the background color of the RadioButton control.
CheckAlign This property is used to set the location of the check box portion of the RadioButton.

Checked
This property is used to set a value indicating whether the RadioButton control is
checked.

Font This property is used to set the font of the text displayed by the RadioButton control.
ForeColor This property is used to set the foreground color of the RadioButton control.

Location
This property is used to sets the coordinates of the upper-left corner of the
RadioButton control relative to the upper-left corner of its form.

Name This property is used to sets the name of the RadioButton control.
Padding This property is used to sets padding within the RadioButton control.
Text This property is used to set the text associated with this RadioButton control.
TextAlign This property is used to set the alignment of the text on the RadioButton control.

Visible
This property is used to set a value indicating whether the RadioButton control and
all its child controls are displayed.

Important Events

Event Description
Click This event occurs when the RadioButton control is clicked.
CheckedChanged This event occurs when the value of the Checked property changes.
AppearanceChanged This event occurs when the Appearance property value changes.
DoubleClick This event occurs when the user double-clicks the RadioButton control.
Leave This event occurs when the input focus leaves the RadioButton control.
MouseClick This event occurs when the RadioButton control is clicked by the mouse.

MouseDoubleClick
This event occurs when the user double-clicks the RadioButton control
with the mouse.

MouseHover This event occurs when the mouse pointer rests on the RadioButton control.
MouseLeave This event occurs when the mouse pointer leaves the RadioButton control.

ListBoxes

list box control contains a simple list from which the user can generally select one or more items.
List boxes provide limited flexibility compared with List View controls.

List box items can be represented by text strings, bitmaps, or both. If the list box is not large enough
to display all the list box items at once, the list box provides a scroll bar. The user scrolls through
the list box items and applies or removes selection status as necessary. Selecting a list box item
changes its visual appearance, usually by changing the text and background colors to those
specified by the relevant operating system metrics. When the user selects or deselects an item, the
system sends a notification message to the parent window of the list box.

DOT NET PROGRAMMING

For an ANSI application, the system converts the text in a list box to Unicode by using the
CP_ACP code page. This can cause problems. For example, accented Roman characters in a non-
Unicode list box in Windows, Japanese version will come out garbled. To fix this, either compile

 Creating a List Box

The easiest way to create a list box in a dialog box is to drag it from the Toolbox in Microsoft
Visual Studio onto your dialog resource. To create a list box dynamically, or to create a list box in a
window other than a dialog box, use the CreateWindowEx function, specifying the WC_LISTBOX
window class and the appropriate list box styles.

List Box Types and Styles

There are two types of list boxes: single-selection (the default) and multiple-selection. In a single-
selection list box, the user can select only one item at a time. In a multiple-selection list box, the
user can select more than one item at a time. To create a multiple-selection list box, specify the
LBS_MULTIPLESEL or the LBS_EXTENDEDSEL style.

The appearance and operation of a list box is controlled by list box styles and window styles. These
styles indicate whether the list is sorted, arranged in multiple columns, drawn by the application,
and so on. The dimensions and styles of a list box are typically defined in a dialog box template that
is included in an application's resources.

Note

To use visual styles with these controls, an application must include a manifest and must call
InitCommonControls at the beginning of the program. For information on visual styles, see Visual
Styles. For information on manifests, see Enabling Visual Styles.

List Box Functions

The DlgDirList function replaces the contents of a list box with the names of drives, directories, and
files that match a specified set of criteria. The DlgDirSelectEx function retrieves the current
selection in a list box that is initialized by DlgDirList. These functions make it possible for the user
to select a drive, directory, or file from a list box without typing the location and name of the file.

Also, the GetListBoxInfo function returns the number of items per column in a specified list box.

Notification Messages from List Boxes

When an event occurs in a list box, the list box sends a notification code, in the form of a
WM_COMMAND message, to the dialog box procedure of the owner window. List box
notification codes are sent when a user selects, double-clicks, or cancels a list box item; when the
list box receives or loses the keyboard focus; and when the system cannot allocate enough memory
for a list box request. A WM_COMMAND message contains the list box identifier in the low-

DOT NET PROGRAMMING

order word of the wParam parameter, and the notification code in the high-order word. The lParam
parameter contains the control window handle.

A dialog box procedure is not required to process these messages; the default window procedure
processes them.

An application should monitor and process the following list box notification codes.

Notification Messages from List Boxes
Notification
code

Description

LBN_DBLCLK The user double-clicks an item in the list box.
LBN_ERRSPAC
E

The list box cannot allocate enough memory to fulfill a
request.

LBN_KILLFOC
US

The list box loses the keyboard focus.

LBN_SELCANC
EL

The user cancels the selection of an item in the list
box.

LBN_SELCHAN
GE

The selection in a list box is about to change.

LBN_SETFOCU
S

The list box receives the keyboard focus.

ListBoxes and ComboBoxes : As mentioned, the CheckedListBox type inherits most

of its functionality from the ListBox type. To illustrate using the

ListBox type, let's add another feature to the current

CarConfig application: the ability to select the make

(BMW, Yugo, and so on) of the automobile. Figure

shows the desired UI.

As always, begin by creating a member variable

to manipulate your type (in this case a ListBox type).

Next, configure the look and feel and insert the new

widget in the Form's Controls collection, as shown here:

DOT NET PROGRAMMING

// Configure the list box.
carMakeList.Location = new System.Drawing.Point (168, 48);
 carMakeList.Size = new System.Drawing.Size (112, 67);
carMakeList.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
carMakeList.ScrollAlwaysVisible= true; carMakeList.Sorted = true;

// Populate the listBox using the AddRange() method.
carMakeList.Items.AddRange(new object[9] { "BMW", "Caravan",
"Ford", "Grand Am", "Jeep", "Jetta", "Saab", "Viper", "Yugo"});

// Add new widget to Form's Control collection.
this.Controls.Add (this.carMakeList);

The update to the btnOrder_Click() event handler is also simple, as shown here:
protected void btnOrder_Click (object sender, System.EventArgs e)
{

// Get the currently selected item (not index of the item).
if(carMakeList.SelectedItem != null)
orderInfo += "Make: " + carMakeList.SelectedItem + "\n";
...
}

DOT NET PROGRAMMING

using System;

using System.Drawing;

using System.Windows.Forms;

namespace WindowsFormsApplication1

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 listBox1.Items.Add("Sunday");

 listBox1.Items.Add("Monday");

 listBox1.Items.Add("Tuesday");

 listBox1.Items.Add("Wednesday");

 listBox1.Items.Add("Thursday");

 listBox1.Items.Add("Friday");

 listBox1.Items.Add("Saturday");

 listBox1.SelectionMode = SelectionMode.MultiSimple;

 }

 private void button1_Click(object sender, EventArgs e)

 {

 foreach (Object obj in listBox1.SelectedItems)

 {

 MessageBox.Show(obj.ToString ());

 }

 }

 }

}

DOT NET PROGRAMMING

 ComboBoxes :

 Like a ListBox, a ComboBox allows the user to make a selection from a well-defined set of

possibilities. However, the ComboBox type is unique in that the user can also insert additional

items. Recall that ComboBox derives from ListBox (which then derives from Control). To

illustrate its use, add yet another GUI widget to the CarConfig application that allows a user to

enter the name of a preferred salesperson.

If the salesperson in question is not on the list, the

user can enter a custom name. The GUI update is

shown in Figure.

This modification begins with configuring the ComboBox itself. As you can see here, the
logic looks identical to that for the ListBox:

// ComboBox configuration.
comboSalesPerson.Location = new System.Drawing.Point (152, 16);
comboSalesPerson.Size = new System.Drawing.Size (128, 21);
comboSalesPerson.Items.AddRange(new object[4]{ "Baby Ry-Ry", "SPARK!", "Danny
Boy", "Karin 'Baby' Johnson"});
this.Controls.Add (this.comboSalesPerson);

The update to the btnOrder_Click() event handler is again simple, as shown
here:

 protected void btnOrder_Click (object sender, System.EventArgs e)

DOT NET PROGRAMMING

{

if(comboSalesPerson.Text != "")

orderInfo += "Sales Person: " + comboSalesPerson.Text + "\n";
else

orderInfo += "You did not select a sales person!" + "\n";

}

How add a item to combobox

comboBox1.Items.Add("Sunday");

comboBox1.Items.Add("Monday");

comboBox1.Items.Add("Tuesday");

ComboBox SelectedItem

How to retrieve value from ComboBox

If you want to retri

DOT NET PROGRAMMING

string var;

var = comboBox1.Text;

Or

var item = this.comboBox1.GetItemText(this.comboBox1.SelectedItem);

MessageBox.Show(item);

using System;
using System.Windows.Forms;
namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }
 private void Form1_Load(object sender, EventArgs e)
 {
 comboBox1.Items.Add("weekdays");
 comboBox1.Items.Add("year");
 }
 private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
 {
 comboBox2.Items.Clear();
 if (comboBox1.SelectedItem == "weekdays")
 {
 comboBox2.Items.Add("Sunday");
 comboBox2.Items.Add("Monday");
 comboBox2.Items.Add("Tuesday");
 }
 else if (comboBox1.SelectedItem == "year")
 {
 comboBox2.Items.Add("2012");
 comboBox2.Items.Add("2013");
 comboBox2.Items.Add("2014");
 }

DOT NET PROGRAMMING

 }
 }

}

Combo Box Types and Styles
A combo box consists of a list and a selection field. The list presents the options that a user can
select, and the selection field displays the current selection. If the selection field is an edit control,
the user can enter information not available in the list; otherwise, the user can only select items in
the list.

The common controls library includes three main styles of combo box, as shown in the following
table.

Combo Box Types and Styles

Combo box type Style constant Description

Simple CBS_SIMPLE
Displays the list at all times, and shows the selected
item in an edit control.

Drop-down CBS_DROPDOWN
Displays the list when the icon is clicked, and
shows the selected item in an edit control.

Drop-down list
(drop list)

CBS_DROPDOWNLIST
Displays the list when the icon is clicked, and
shows the selected item in a static control.

The following screen shots each show the three kinds of combo box as they might appear in
Windows Vista. In the first screen shot, the user has selected an item in the simple combo box. The
user can also type a new value in the edit box of this control. The list has been sized in the
Microsoft Visual Studio resource editor and is only large enough to accommodate two items.

DOT NET PROGRAMMING

In the second screen shot, the user has typed new text in the edit control of the drop-down combo
box. The user could also have selected an existing item. The list box expands to accommodate as
many items as possible.

In the third screen shot, the user has opened the drop-down list combo box. The list box expands to
accommodate as many items as possible. The user cannot enter new text.

DOT NET PROGRAMMING

There are also a number of combo box styles that define specific properties. Combo box styles
define specific properties of a combo box. You can combine styles; however, some styles apply only
to certain combo box types. For a table of combo box styles, see Combo Box Styles.

Note

To use visual styles with combo boxes, an application must include a manifest and must call
InitCommonControls at the beginning of the program. For information on visual styles, see Visual
Styles. For information on manifests, see Enabling Visual Styles.

Combo Box List
The list is the portion of a combo box that displays the items a user can select. Typically, an
application initializes the contents of the list when it creates a combo box. Any list item selected by
the user is the current selection. Multiple items cannot be selected. In simple and drop-down combo
boxes, the user can type in the selection field instead of selecting a list item. In these cases, there is
no current selection, and it is the application's responsibility to add the item to the list and make it
the current selection, if it is appropriate to do so.

This section discusses following topics:

 Current Selection
 Drop-down Lists
 List Contents

Current Selection

The current selection is a list item that the user has selected; the selected text appears in the
selection field of the combo box. However, in the case of a simple combo box or a drop-down
combo box, the current selection is only one form of possible user input in a combo box. The user
can also type text in the selection field.

The current selection is identified by the zero-based index of the selected list item. An application
can set and retrieve it at any time. The parent window or dialog box procedure receives notification
when the user changes the current selection for a combo box. The parent window or dialog box is
not notified when the application changes the selection.

When a combo box is created, there is no current selection. This is also true for a simple or drop-
down combo box, if the user has edited the contents of the selection field. To set the current
selection, an application sends the CB_SETCURSEL message to the combo box. An application
can also use the CB_SELECTSTRING message to set the current selection to a list item whose
string begins with a specified string. To determine the current selection, an application sends the
CB_GETCURSEL message to the combo box. If there is no current selection, this message returns
CB_ERR.

When the user changes the current selection in a combo box, the parent window or dialog-box
procedure receives a WM_COMMAND message with the CBN_SELCHANGE notification code

DOT NET PROGRAMMING

in the high-order word of the wParam parameter. This notification code is not sent when the current
selection is set using the CB_SETCURSEL message.

A drop-down combo box or drop-down list box sends the CBN_CLOSEUP notification code to the
parent window or dialog-box procedure when the drop-down list closes. If the user changed the
current selection, the combo box also sends the CBN_SELCHANGE notification code when the
drop-down list closes. To execute a specific process each time the user selects a list item, you can
handle either the CBN_SELCHANGE or CBN_CLOSEUP notification code. Typically, you would
wait for the CBN_CLOSEUP notification code before processing a change in the current selection.
This can be particularly important if a significant amount of processing is required.

An application could also process the CBN_SELENDOK and CBN_SELENDCANCEL
notification codes. The system sends CBN_SELENDOK when the user selects a list item, or selects
an item and then closes the list. This indicates that the user has finished, and that the selection
should be processed. CBN_SELENDCANCEL is sent when the user selects an item, but then
selects another control, presses ESC while the drop-down list is open, or closes the dialog box. This
indicates that the user's selection should be ignored. CBN_SELENDOK is sent before every
CBN_SELCHANGE message.

In a simple combo box, the system sends the CBN_DBLCLK notification code when the user
double-clicks a list item. In a drop-down combo box or drop-down list, a single click hides the list,
so it is not possible to double-click an item.

Drop-down Lists

Certain notifications and messages apply only to combo boxes containing drop-down lists. When a
drop-down list is open or closed, the parent window of a combo box receives a notification in the
form of a WM_COMMAND message. If the list is being opened, the high-order word of wParam
is CBN_DROPDOWN. If the list is being closed, it is CBN_CLOSEUP.

An application can open the list of a drop-down combo box or drop-down list box by using the
CB_SHOWDROPDOWN message. It can determine whether the list is open by using the
CB_GETDROPPEDSTATE message and can determine the coordinates of a drop-down list by
using the CB_GETDROPPEDCONTROLRECT message. An application can also increase the
width of a drop-down list by using the CB_SETDROPPEDWIDTH message.

Month Calendar Control Features

The following screen shot shows a month calendar control that has been sized to show two months.

DOT NET PROGRAMMING

Note:The appearance and behavior of the month calendar control differs slightly under different
versions of the run-time library.

 The control in the illustration has the following optional features.

 The current date is shown on a separate line at the bottom of the control. This is the default
style.

 The "today circle" (actually a rectangle in this version) appears around the current day, and
beside the "Today" line as a visual cue. This is the default style.

 Week numbers are shown at the left of each row of days. This style must be specified.
 Some dates are shown in bold, according to the day state set by the application. For

example, dates that have scheduled meetings might be shown in bold. This style must be
specified.

Note

Windows does not support dates prior to 1601. See FILETIME for details.

The month-calendar control is based on the Gregorian calendar, which was introduced in 1753. It
will not calculate dates that are consistent with the Julian calendar that was in use prior to 1753.

Selecting a day

By default, when a user clicks the arrow buttons in the top left or top right of the month calendar
control, the control updates its display to show the previous or next month. The user can also
perform the same action by clicking the partial months displayed before the first month and after the
last month.

DOT NET PROGRAMMING

The following keyboard commands can also be used to move the selection. The calendar always
scrolls as necessary to display the selected day. (The virtual key codes are shown in the table.)

Selecting a day

Left arrow
(VK_LEFT) Select the previous day.

Right arrow
(VK_RIGHT) Select the next day.

Up arrow (VK_UP) Select the same day in the previous week.
Down arrow
(VK_DOWN) Select the same day in the next week.

PAGE UP
(VK_PRIOR)

Select the same day in the previous month. (If that month does
not have the day, the closest day is selected; for example, the
selection moves from March 31 to February 28 or 29.)

PAGE DOWN
(VK_NEXT) Select the same day in the next month.

HOME (VK_HOME) Select the first day of the current month.
END (VK_END) Select the last day of the current month.

CTRL + HOME
Scroll one month backward and select a day in the leftmost
column.

CTRL + END
Scroll one month forward and select a day in the rightmost
column.

CTRL + PAGE UP

Select the same day in an earlier month. The number of months
by which the selection moves is the number of months displayed
in the control. For example, if two months are displayed, the
selection would move from June 6 to May 6.

CTRL + PAGE
DOWN

Select the same day in an earlier month. The number of months
by which the selection moves is the number of months displayed
in the control. For example, if two months are displayed, the
selection would move from June 6 to August 6.

If a month calendar control is not using the MCS_NOTODAY style, the user can return to the
current day by clicking the "Today" text at the bottom of the control. If the current day is not
visible, the control updates its display to show it.

An application can change the number of months by which the control updates its display by using
the MCM_SETMONTHDELTA message or the corresponding macro, MonthCal_SetMonthDelta.
However, the PAGE UP and PAGE DOWN keys change the selected month by one, regardless of
the number of months displayed or the value set by MCM_SETMONTHDELTA.

Selecting a nonadjacent month

When a user clicks the name of a displayed month, all months in the year are listed (in earlier
versions, this is a pop-up menu). The user can select a month on the list. If the user's selection is not
visible, the month calendar control scrolls its display to show the chosen month. In the following
screen shot, a month calendar control shows the months of two adjacent years.

DOT NET PROGRAMMING

Selecting a different year

If the user clicks the year, a group of years is listed, and the user can select a different one, as shown
in the following screen shot.

Localization

The month-calendar control gets its format and all strings from LOCALE_USER_DEFAULT.

Times in the Month Calendar Control

DOT NET PROGRAMMING

The month calendar control does not display the time. However, the SYSTEMTIME structure that
is used to set and retrieve the selected date or today's date contains time fields. When a date is set
programmatically, the control either copies the time fields as they are or validates them first and
then, if they are invalid, stores the current default times. Following is a list of the messages that set
a date and a description of how the time fields are treated.

Times in the Month Calendar Control

MCM_SETCURSE
L

The control copies the time fields as they are, without
validation or modification.

MCM_SETRANGE

The time fields of the structures passed in are validated. If
they are valid, the time fields are copied without
modification. If they are invalid, the control copies the time
fields from today's data.

MCM_SETSELRAN
GE

The time fields of the structures passed in are validated. If
they are valid, the time fields are copied without
modification. If they are invalid, the control retains the
time fields from the current selection ranges.

MCM_SETTODAY
The control copies the time fields as they are, without
validation or modification.

When a date is retrieved from the control, the time fields will be copied from the stored times
without modification. Handling of the time fields by the control is provided as a convenience to the
programmer. The control does not examine or modify the time fields as a result of any operation
other than those listed above.

The MonthCalendar Control : The System.Windows.Forms namespace provides an

extremely useful widget that allows the user to select a date (or range of dates) using a

friendly user interface: the MonthCalendar control. To showcase this new control, update the

existing CarConfig application to allow the user to enter in the new vehicle's delivery date.

Figure shows the updated (and slightly rearranged) Form.

To begin understanding this new type, examine the core

MonthCalendar properties described in Table

protected void btnOrder_Click (object sender, System.EventArgs e)

DOT NET PROGRAMMING

 Calendar basicCalendar = new Calendar();
 basicCalendar.DisplayDateStart = new DateTime(2009, 1, 10);
 basicCalendar.DisplayDateEnd = new DateTime(2009, 4, 18);
 basicCalendar.DisplayDate = new DateTime(2009, 3, 15);
 basicCalendar.SelectedDate = new DateTime(2009, 2, 15);

 // root is a Panel that is defined elswhere.
 root.Children.Add(basicCalendar);

// Get ship date.
DateTime d = monthCalendar.SelectionStart;
string dateStr = string.Format("{0}/{1}/{2}", d.Month, d.Day, d.Year);
orderInfo+= "Car will be sent: " + dateStr;
...
}

DOT NET PROGRAMMING

More on the DateTime Type : In the current example, you extracted a DateTime type from the

MonthCalendar widget using the SelectionStart and SelectionEnd properties. After this point,

you used the Month, Day, and Year properties to build a custom format string. While this is

permissible, it is not optimal, given that the DateTime type has a number of built-in formatting

options (Table).

Using these members, you can replace the previous formatting you programmed by

hand with the following (you will see no change in the program's output):

string dateStartStr = startD.Date.ToShortDateString();
string dateEndStr = endD.Date.ToShortDateString();

Assigning ToolTips to Controls :

In the System.Windows.Forms namespace, the ToolTip are simply small floating windows that

display a helpful message when the cursor hovers over a given item. Table describes the core

members of the ToolTip type.

DOT NET PROGRAMMING

// Create and associate a tool tip to the calendar calendarTip.Active = true;
calendarTip.SetToolTip (monthCalendar,

"Please select the date (or dates)\n when we can deliver your new car!");

DOT NET PROGRAMMING

// Create and associate a tool tip to the calendar

calendarTip.Active = true;
calendarTip.SetToolTip (monthCalendar,"Please select the date (or date
s)\n when we can deliver your new car!");

// Creating a ToolTip controlToolTip t_Tip = new ToolTip();
// Seting the properties of ToolTipt_Tip.Active = true;
t_Tip.AutoPopDelay = 4000;
t_Tip.InitialDelay = 600;
 t_Tip.IsBalloon = true;
t_Tip.ToolTipIcon = ToolTipIcon.Info;
 t_Tip.SetToolTip(box1, "Name should start with Capital letter");
 t_Tip.SetToolTip(box2, "Password should be greater than 8 words");

Constructor

Constructor Description

ToolTip()
This Constructors is used to initialize a new instance of the ToolTip without
a specified container.

ToolTip(IContainer)
This Constructors is used to initialize a new instance of the ToolTip class
with a specified container.

Properties

Property Description
Active This property is used to get or set a value indicating whether the ToolTip is

DOT NET PROGRAMMING

currently active.
AutomaticDelay This property is used to get or set the automatic delay for the ToolTip.

AutoPopDelay
This property is used to get or set the period of time the ToolTip remains visible
if the pointer is stationary on a control with specified ToolTip text.

BackColor This property is used to get or set the background color for the control.
ForeColor This property is used to get or set the foreground color of the control.

InitialDelay
This property is used to get or set the time that passes before the ToolTip
appears.

IsBalloon
This property is used to get or set a value indicating whether the ToolTip should
use a balloon window.

ReshowDelay
This property is used to get or set the length of time that must transpire before
subsequent ToolTip windows appear as the pointer moves from one control to
another.

ToolTipIcon
This property is used to get or set a value that defines the type of icon to be
displayed alongside the ToolTip text.

ToolTipTitle This property is used to get or set a title for the ToolTip window.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace WindowsFormsApp34 {

public partial class Form1 : Form {

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // Creating and setting the
 // properties of the Label
 Label l1 = new Label();
 l1.Location = new Point(140, 122);
 l1.Text = "Name";

DOT NET PROGRAMMING

 // Adding this Label
 // control to the form
 this.Controls.Add(l1);

 // Creating and setting the
 // properties of the TextBox
 TextBox box1 = new TextBox();
 box1.Location = new Point(248, 119);
 box1.BorderStyle = BorderStyle.FixedSingle;

 // Adding this TextBox
 // control to the form
 this.Controls.Add(box1);

 // Creating and setting the
 // properties of Label
 Label l2 = new Label();
 l2.Location = new Point(140, 152);
 l2.Text = "Password";

 // Adding this Label
 // control to the form
 this.Controls.Add(l2);

 // Creating and setting the
 // properties of the TextBox
 TextBox box2 = new TextBox();
 box2.Location = new Point(248, 145);
 box2.BorderStyle = BorderStyle.FixedSingle;

 // Adding this TextBox
 // control to the form
 this.Controls.Add(box2);

 // Creating and setting the
 // properties of the ToolTip
 ToolTip t_Tip = new ToolTip();
 t_Tip.Active = true;
 t_Tip.AutoPopDelay = 4000;
 t_Tip.InitialDelay = 600;
 t_Tip.IsBalloon = true;
 t_Tip.ToolTipIcon = ToolTipIcon.Info;
 t_Tip.SetToolTip(box1, "Name should start with Capital letter");
 t_Tip.SetToolTip(box2, "Password should be greater than 8 words");

DOT NET PROGRAMMING

 }
}
}

Tooltip Properties

 Active - A tooltip is currently active.
 AutomaticDelay - Automatic delay for the tooltip.
 AutoPopDelay - The period of time the ToolTip remains visible if the pointer is stationary on

a control with specified ToolTip text.
 InitialDelay - Gets or sets the time that passes before the ToolTip appears.
 IsBaloon - Gets or sets a value indicating whether the ToolTip should use a balloon window.
 ReshowDelay - Gets or sets the length of time that must transpire before subsequent ToolTip

windows appear as the pointer moves from one control to another.
 ShowAlways - Displays if tooltip is displayed even if the parent control is not active.
 ToolTipIcon - Icon of tooltip window.
 ToolTipTitle - Title of tooltip window.
 UseAnimation - Represents whether an animation effect should be used when displaying the

tooltip.
 UseFading - Represents whether a fade effect should be used when displaying the tooltip.

DOT NET PROGRAMMING

Tooltips appear automatically, or pop up, when the user pauses the mouse pointer over a tool or
some other UI element. The tooltip appears near the pointer and disappears when the user clicks a
mouse button, moves the pointer away from the tool, or simply waits for a few seconds.

The tooltip control in the following illustration displays information about a file on the Windows
desktop. As you move the mouse over the illustration, you should also see a live tooltip that
contains descriptive text.

Tooltip Behavior and Appearance
Tooltip controls can display a single line of text or multiple lines. Their corners can be rounded or
square. They might or might not have a stem that points to the tools like a cartoon speech balloon.
Tooltip text can be stationary or can move with the mouse pointer, called tracking. Stationary text
can be displayed adjacent to a tool or it can be displayed over a tool, which is referred to as in-
place. Standard tooltips are stationary, display a single line of text, have square corners, and have no
stem pointing to the tool.

Tracking tooltips, which are supported by version 4.70 of the common controls, change position on
the screen dynamically. By rapidly updating the position, these tooltip controls appear to move
smoothly, or "track." These are useful when you want tooltip text to follow the position of the
mouse pointer as it moves. For more information about tracking tooltips and an example with code
that shows how you create them, see Tracking Tooltips.

Multiline tooltips, which are also supported by version 4.70 of the common controls, display text on
more than one line. These are useful for displaying lengthy messages. For more information and an
example that shows how to create multiline tooltips, see Multiline Tooltips.

Balloon tooltips are displayed in a box with rounded corners and a stem pointing to the tool. They
can be either single-line or multiline. The following illustration shows a balloon tooltip with the
stem and rectangle in their default positions. For more information about balloon tooltips and an
example that shows how to create them, see Using Tooltip Controls.

DOT NET PROGRAMMING

A tooltip can also have title text and an icon, as shown in the following illustration. Note that the
tooltip must have text; if it has only title text, the tooltip does not display. Also the icon does not
appear unless there is a title.

Sometimes text strings are clipped because they are too long to be displayed completely in a small
window. In-place tooltips are used to display text strings for objects that have been clipped, such as
the file name in the following illustration. For an example that shows how to create in-place
tooltips, see In-Place Tooltips.

The cursor must hover over a tool for a period of time before the tooltip is displayed. The default
duration of this timeout is controlled by the user's double click time and is typically about one-half
second. To specify a non-default timeout value, send the tooltip control a TTM_SETDELAYTIME
message.

Creating Tooltip Controls
To create a tooltip control, call CreateWindowEx and specify the TOOLTIPS_CLASS window
class. This class is registered when the common control DLL is loaded. To ensure that this DLL is
loaded, include the InitCommonControlsEx function in your application. You must explicitly
define a tooltip control as topmost. Otherwise, it might be covered by the parent window. The
following code fragment shows how to create a tooltip control.

DOT NET PROGRAMMING

HWND hwndTip = CreateWindowEx(NULL, TOOLTIPS_CLASS, NULL,
 WS_POPUP | TTS_NOPREFIX | TTS_ALWAYSTIP,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 hwndParent, NULL, hinstMyDll,
 NULL);

SetWindowPos(hwndTip, HWND_TOPMOST,0, 0, 0, 0,
 SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE);

The window procedure for the tooltip control automatically sets the size, position, and visibility of
the control. The height of the tooltip window is based on the height of the font currently selected
into the device context for the tooltip control. The width varies based on the length of the string
currently in the tooltip window.

Activating Tooltip Controls
A tooltip control can be either active or inactive. When it is active, the tooltip text appears when the
mouse pointer is on a tool. When it is inactive, the tooltip text does not appear, even if the pointer is
on a tool. The TTM_ACTIVATE message activates and deactivates a tooltip control.

Supporting Tools
A tooltip control can support any number of tools. To support a particular tool, you must register the
tool with the tooltip control by sending the control the TTM_ADDTOOL message. The message
includes the address of a TOOLINFO structure, which provides information the tooltip control
needs to display text for the tool. The uID member of the TOOLINFO structure is defined by the
application. Each time you add a tool, your application provides a unique identifier. The cbSize
member of the TOOLINFO structure is required, and must specify the size of the structure.

A tooltip control supports tools implemented as windows (such as child windows or control
windows) and as rectangular areas within a window's client area. When you add a tool implemented
as a rectangular area, the hwnd member of the TOOLINFO structure must specify the handle to
the window that contains the area, and the rect member must specify the client coordinates of the
area's bounding rectangle. In addition, the uID member must specify the application-defined
identifier for the tool.

When you add a tool implemented as a window, the uID member of the TOOLINFO structure
must contain the window handle to the tool. Also, the uFlags member must specify the
TTF_IDISHWND value, which tells the tooltip control to interpret the uID member as a window
handle.

Displaying Text
When you add a tool to a tooltip control, the lpszText member of the TOOLINFO structure must
specify the address of the string to display for the tool. After you add a tool, you can change the text
using the TTM_UPDATETIPTEXT message.

If the high-order word of lpszText is zero, the low-order word must be the identifier of a string
resource. When the tooltip control needs the text, the system loads the specified string resource
from the application instance identified by the hinst member of the TOOLINFO structure.

DOT NET PROGRAMMING

If you specify the LPSTR_TEXTCALLBACK value in the lpszText member, the tooltip control
notifies the window specified in the hwnd member of the TOOLINFOstructure whenever the
tooltip control needs to display text for the tool. The tooltip control sends the TTN_GETDISPINFO
notification code to the window. The message includes the address of a NMTTDISPINFO
structure, which contains the window handle as well as the application-defined identifier for the
tool. The window examines the structure to determine the tool for which text is needed, and it fills
the appropriate structure members with information that the tooltip control needs in order to display
the string.

Note:

The maximum length for standard tooltip text is 80 characters. For more information, see the
NMTTDISPINFO structure. Multiline tooltip text can be longer.

Many applications create toolbars containing tools that correspond to menu commands. For such
tools, it is convenient for the tooltip control to display the same text as the corresponding menu
item. The system automatically strips the ampersand (&) accelerator characters from all strings
passed to a tooltip control, and terminates the string at the first tab character (\t), unless the control
has the TTS_NOPREFIX style.

DOT NET PROGRAMMING

	 InitializeComponent();
	 Application Class :
	 The Anatomy of a Form :
	 Table : Events of the Control Type
	 // Need this for Rectangle definition.

	 The Control Class Revisited :
	 Table : Additional Control Methods

	 e :
	 // Hold the current alignment value.
	 // Get all possible values of the ContentAlignment enum.
	 // Bump the current position in the enum.
	 // Now assign the location of the icon on btnImage...
	 How to Call a Button's Click Event Programmatically
	 Important Events on Button

	 // Create your CheckBox.
	 // Add to Control collection.
	 // Yellow RadioButton.
	 // Green, Red, Pink RadioButtons configured in a similar vein.
	 // Figure out when the focus is in your group.
	 // Send this string to the Label.
	 // Configure the CheckedListBox.
	 // As always, add the new widget to the Controls collection.
	 // For each item in the CheckedListBox:
	 // Is the current item checked?
	 // Get text of checked item and append to orderinfo string.
	 Important Properties
	 Important Events

	 Creating a List Box
	 List Box Types and Styles
	 List Box Functions
	 Notification Messages from List Boxes
	 // Configure the list box.
	 // Add new widget to Form's Control collection.
	 // Get the currently selected item (not index of the item).
	 // ComboBox configuration.
	
	 How add a item to combobox
	 ComboBox SelectedItem
	 How to retrieve value from ComboBox

	 Combo Box Types and Styles
	 Combo Box List
	Current Selection
	 Drop-down Lists

	 Month Calendar Control Features
	 Selecting a day
	 Selecting a nonadjacent month
	 Selecting a different year

	 Localization
	 Times in the Month Calendar Control
	 // Get ship date.
	 Constructor
	 Properties

	Tooltip Behavior and Appearance
	 Creating Tooltip Controls
	 Activating Tooltip Controls
	 Supporting Tools
	 Displaying Text

